

Chp 14: Chemical Bonding Complete the oxidation numbers for this chart

		Most common oxidation number						
1a								8a
	2a		3a	4a	5a	6a	7a	
ali metals	Earth metals	3b-12b	n Family	on Family	en Family	en Family	ogens	ble Gases
Alk	Alkaline -	Transition Metals	Boro	Carb	Nitrog	Охуд	Hal	No

Definiti	ons: From the Book / or YOUR definition
Match the name to the correct definition	Sect 1: Electrons & chemical bonding 352-355 Sect 2: Types of Chemical Bonds Pg 356-365
Chemical bonding	A. a repeating three-dimensional pattern of ions
Chemical bond	B. a force of attraction that holds two atoms together
Valence electrons	C. the joining of atoms to form new substances
lonic bond	D. a neutral group of atoms held together by covalent bonds
ions	E. the force of attraction between the nuclei of atoms and the electrons shared by the atoms
Crystal lattice	F. the attraction between a positively charged metal ion and the electrons in a metal
Covalent bond	G. charged particles that form during chemical changes when one or more valence electrons transfer from one atom to another
molecule	H. the force of attraction between oppositely charged ions
Metallic bond	I. the electrons in the outermost energy level of an atom, and are involved with bonding
Chp 14	4: Space for Notes you want for the final:

Name: _____ Pd____ Sci Number:_____

Parent's signature of completion_____

Lewis Dot Structures

Lewis dot diagrams are a simplified way to show how the electrons are arranged in their outer shell. These are the valence electrons. This is where the chemical bonding & reactions take place. Here are the steps to drawing a Lewis dot structure:

Г											
Ι.	Exami	ole: Drav	v the Le	wis d	ot str	uctu	re fa	or Ni	troa	en	
4							,·				
	1.	Write tl	he elem	ent sv	mbol			N	1		

- 1. Write the element symbol.
- 2. Determine the # of valence electrons. 5
- 3. Draw that # of dots around the symbol!

Draw the Lewis structures for each of the elements below:

н	AI	В	Ne	Kr
CI	F	Ga	S	Li
с	Cs	He	Sr	Ρ
Be	Si	Ba	Mg	As

Teach a parent :

Explain what a valence electron is AND how they are involved with the bonding process. Use the periodic table to show how many electrons are available for bonding. Parent Response

1. _____ I'm not sure my child really understands, therefore, I don't either. Please work with him/her and let's try again.

2. _____ The concept was explained thoroughly with effective examples he/she created.

"By golly, I think they've got it!"

3. _____ WOW! My child did an exceptional job! It was logically explained, therefore I caught on immediately and feel confident about teaching it to others. Parent Signature: _____ Date: _____ + 1-2 sentences

Ionic Bonding Basics

Element	# of Electrons	# of Valence Electrons	# of electrons gained or lost	Oxidation #
Sodium example:	11	<u>1</u>	1 lost	1+
Chlorine				
Calcium				
Fluorine				
Aluminum				
Oxygen				
Potassium				

Drawing Ionic Bonding:

Ionic bonding occurs when a ______ transfers 1 or more electrons to a in an effort to attain a stable octet of electrons.

1. Write the symbol for each element and Use dots to create each Lewis structure.

2. Draw an arrow(s) to show the transfer of electrons and move the dots to the new location.

3. Decide if you need additional elements (if you have extra electrons that need to be bonded)

4. Determine the charge for each ion and write the formula.

5. Make sure the sum of the oxidation numbers is zero & write the chemical formula.

6. Use crayons or colored pencils to color in the electrons once you remove them.

(1) Potassium + Fluorine example: $K + F \rightarrow K^{1+}F^{1-}$	(2) Magnesium + Iodine	(3) Sodium + Oxygen
(4) Sodium + Chlorine	(5) Calcium + Chlorine	(6) Aluminum + Chlorine

Drawing Covalent Bonding:

Covalent bond	ing occurs when 2	or more	SHARE electrons	,
1 H + H -> H ₂	a stable octet of ele	ctrons. Con	ipiete the examples be	low:
1. 11 • 11 • 112				
2.0 ± 0.50				
2.0 + 0 - 2 02				
2C+O > CO				
$5.0 + 0_2 - 20_2$				
pair	ed electrons in valence energy level			
X	××.	• Lets use H	CI (2 non-metals) H • +	• CI :
(H),+ (, CI) _ H CI)	 1st – Draw t for each ator 	he Lewis Structure	
		 2nd – Draw the shared 	ne electron(s) being	ci
Example:	overlap of electron orbitals and sharing of electron pair	 3rd – Draw e as a line bet 	ach covalent bond tween the two atoms	•••
Types of bonds: Clas	sify the following c	compounds	as ionic (+)
or covalent (+) or	metallic (+)	
2 CO ₂	4. MgO 5. Aluminum Eoi	 il·		
3. H ₂ O	6. NO ₂		9. Cu ₂	
 Todov'o concept is	in 2 norto, Eval	 ain tha diff	forent types of bondi	
1 Covalent 2 Ionic	3 Motallic AND I	ann the uni Evolain HC	W each bond takes	ny. nlaco
Heln vo	ur narent becom	- an exner	t l	place.
Parent Response		c an exper		
1 I'm not sure my chi	ld really understands, th	nerefore, I dor	ו't either. Please work with h	im/her
and let's try again.				
2 The concept was exercise and the concept was exercised at the con	plained thoroughly with	effective exan	iples he/she created.	
3 WOW! My child did a	an exceptional job! It wa	s logically exp	lained, therefore I caught on	
immediately and feel confident	about teaching it to oth	hers.		
Darant Cianatura		Data	± 1.2 contained	
	<u> </u>	_ Date:		

Fill in the Blank Review Questions:

- 1. When _____are formed, electrons are transferred between atoms
- 2. Atoms covalently bonded together form a _____
- 3. Charged particles that form when atoms transfer electrons are called ____
- 4. A ______ is a three-dimensional pattern formed from alternating positive and negative ions.
- 6. The number of ______ is most important in determining how an atom will bond.
 a. protons b. neutrons c. electrons in the innermost energy level
 d. electrons in the outermost energy level

7. Which type of element is most likely to gain electrons when it forms bonds?

- a. metal b. metalloid c. nonmetal d. noble gas
- 8. Why do atoms have no charge (so they are neutral)?
 - a. The number of protons is equal to the number of neutrons.
 - b. The number of electrons is equal to the number of neutrons.
 - c. The number of protons is equal to the number of electrons.
 - d. There is an equal number of neutrons, protons, and electrons.
- 9. Which of the following elements does not exist as a diatomic molecule?
 - a. oxygen b. argon c. nitrogen d. iodine

10. ____ are formed by atoms losing electrons:

- a. Negative ions b. Positive ions c. Elements d. Compounds
- 11. Which of the following is NOT a metallic property?
 - a. a hard and brittle texture b. high density
 - c. the ability to be flattened and shaped d. the ability to conduct electricity
- 12. Which element has a full outermost energy level containing only two electrons? a. oxygen (O) b. hydrogen (H) c. fluorine (F) d. helium (He)13. Which of the following describes what happens when an atom becomes
 - an ion with a 2⁻ charge?
 - a. The atom gains 2 protons. b. The atom loses 2 protons.
 - c. The atom gains 2 electrons. d. The atom loses 2 electrons.
- 14. The properties of ductility and malleability are associated with which type of bonds? a. ionic b. covalent c. metallic d. None of these
- 15. In which area of the periodic table do you find elements whose atoms easily gain electrons?
 - a. across the top two rows
c. on the right sideb. across the bottom row
d. on the left side
- 16. What type of element tends to lose electrons when it forms bonds? a. metal b. metalloid c. nonmetal d. noble gas
- 17. Which pair of atoms can form an ionic bond? a. sodium (Na) and potassium (K) b
 - a. sodium (Na) and potassium (K) c. fluorine (F) and chlorine (Cl) b. potassium (K) and fluorine (F) d. sodium (Na) and neon (Ne)

Procedure:

Bohr's Models

1. Draw Bohr atomic models for each of the atoms using your Periodic Table.

2. To represent # of protons, write a P- followed by the number of protons. Place in the nucleus.

3. To represent # of neutrons, write a N- followed by the number of neutrons. Place in the nucleus.

4. Use the Periodic Table to determine how many electrons are in each orbital.

5. Use <u>dots</u> to represent the electrons. Pair electrons after the 1st orbital to make it easier for counting

- 6. Be sure to write the symbol, atomic # and atomic mass # for each element.
- 7. Look at Bohr's Atom of Chlorine&Neon as examples of what the Bohr model should look like.

CONCEPT MAPPING

15. Use the following terms to complete the concept map below: malleable, brittle, metals, nonmetals, covalent bonds, electrostatic attraction.

Additional Notes/Drawing Space for Chp 14

Chp 15

Label of the 4 types of reactions FROM section 2 and your class notes Skim pages 382-384 & title the type of reactions below.

Exothermic Reaction	Endothermic Reaction

Definitions:

All mixed up! Write the correct letter to define the word. What page do you find the word on?

Sect 1: Forming New Substances Pg 374-382				
Chemical reaction Correct letter:	a. An efficient way to represent what happens in a chemical reaction			
Chemical formula Correct letter:	b. a process in which one or more substances are changed into new substances			
Subscript Correct letter:	C. The full sized numbers written in front of symbols and formulas that tells how many atoms, molecules or formula units take part in a chemical reaction			
Chemical equation Correct letter:	d. Lavoisier's supported this through experiments that the total mass before a chemical reaction is the same as the total mass after the reaction			
Reactants Correct letter:	e. The starting materials in a chemical reaction			
Products Correct letter:	f. The new substances that are formed during a chemical reaction			
Coefficient Correct letter:	g. An ingredient list for a compound that uses atomic symbols and subscripts			
Law of conservation of mass Correct letter:	h. The small number written to the right of the chemical symbol that tells how many atoms of an element are contained in one molecule of a substance			
Sect 2	: Forming New Substances Pg 382-384			
Synthesis reaction Correct letter:	a. A reaction in which ions in 2 compounds switch places			
Decomposition reaction Correct letter:	b. A reaction in which an element takes the place of another element that is part of a compound. The products are a new compound and a different element			
Single-replacement reaction Correct letter:	c. A reaction in which two or more substances combine to form a single compound			
double-replacement reaction Correct letter:	d. A reaction in which a single compound breaks down to form two or more simpler substances			
Sect 3: Energ	gy & Rates of Chemical Reactions Pg 385-386			
Exothermic letter:	 A substance that speeds up a reaction without permanently being changed 			
Endothermic letter:	 b. The minimum amount of energy needed for a substance to react 			
Law of conservation of	c. A substance that slows down or stops a chemical reaction			
Law of conservation of energy :	 c. A substance that slows down or stops a chemical reaction d. A chemical reaction that releases or removes energy A chemical reaction that her shows a chemical reaction 			
Law of conservation of energy : Activation energy:	 c. A substance that slows down or stops a chemical reaction d. A chemical reaction that releases or removes energy e. A chemical reaction that absorbs energy f. Energy can not the prosted has destroyed in chemical 			

TYPES OF BONDS

Write I for ionic bond, C for covalent bond, or M for metallic bond. (1/2 point each,

mine a joi ton	the bond, e for cordient bond, or she for metallic bond. (seepoint day)
1	An attraction between positive & negative ions
2	_ An attraction between a positive metal ion & the negative electrons in a metal
3	When two atoms share electrons equally
4	_ Created when two atoms transfer electrons
5	Occurs between two metals
6	_ Occurs between a metal & a nonmetal
7	Occurs between two nonmetals
8	_ Found in regular sugar, Splenda, & equal
9	_ Found in regular table salt (NaCl)
10	Possess high melting & boiling points

- 11. _____ Possess low melting & boiling points
- 12. _____ Create rigid crystalline substances
- 13. _____ Do not conduct electricity
- 14. _____ Great conductors heat or electricity
- 15. _____ Conducts heat or electricity only when dissolved in water

Use your periodic table to classify the substances as Ionic (metal – nonmetal), Covalent (nonmetal – nonmetal), or Both (contains both). (1/2 point each)

Example: CaCl₂ Calcium is a metal & chlorine is a nonmetal, so CaCl₂ contains an ionic bond.

16	CO ₂	26	NH ₄ Cl
17	H_2O	27.	HCI
18	$BaSO_4$	28	KI
19	K ₂ O	29	NaOH
20	NaF	30.	NO ₂
21	Na ₂ CO ₃	31	AlPO ₄
22	CH_4	32.	FeCl ₃
23	SO ₃	33	P ₂ O ₅
24	LiBr	34	N_2O_3
25	MgO		

Fill in the grid below about the 4 clues of chemical reactions:see your lecture notes

Clue	Explanation

USING VOCABULARY

To complete the following sentences, choose the correct term from each pair of terms listed, and write the term in the blank.

- 1. A ______ is a shorthand notation that represents a compound or diatomic element. (coefficient or chemical formula)
- The ______ in a reaction is the minimum amount of energy needed for substances to react. (catalyst or activation energy)
- 3. In a ______ reaction, ions in different compounds switch places. (single-replacement or double-replacement)
- 4. In a chemical formula, if no ______ is written after an element, then only one atom of that element is present. (subscript or coefficient)
- 5. A(n) ______ slows down or stops a chemical reaction. (catalyst or inhibitor)

UNDERSTANDING CONCEPTS

Multiple Choice

Circle the correct answer.

6. Which of the following is an example of a diatomic element?

a. NaCl	c. Mg
b. О ₂	d. CaCl ₂

7. Which of the following is an example of a single-replacement reaction?

a. Fe + 2HCl \rightarrow FeCl ₂ + H ₂	c. $2H_2O_2 \rightarrow 2H_2O + O_2$
b. 2Mg + O ₂ → 2MgÕ	d. NaÕH̃ + HCĨ → NaČl + H₂O

8. Which of the following is NOT an example of a chemical reaction?

a. milk turning sour	c. a match burning
b. food being digested	d. ice melting

9. How many atoms are represented in the formula CaCO₃?

a. three	c. five
b. four	d. six

- 10. Which of the following usually increases the rate of a reaction?
 - a. decreasing the concentration of the reactants
 - b. grinding a solid reactant into a powder
 - c. lowering the temperature of the reactants

d. raising the temperature of the products

Teach a parent: :

Teach your parents about the 4 different types of chemical reactions. Parent Response

1 I'm not sure my child really understands, .	Please work with h	nim/her and let's try again.		
2 The concept was explained thoroughly with e	ffective examples	he/she created. "they've got it!"		
3 WOW! My child did an exceptional job! It was logically explained, therefore I caught on .				
Parent Signature:	_ Date:	_ + 1-2 sentences		